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On the Asymmetry of a Random Walk in 
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Any ensemble of random walks with symmetric transition probabilities will have 
symmetric properties. However, any single realization of such a random walk 
may be asymmetric. In an earlier paper, Weiss and Weissman developed a 
measure of asymmetry and applied it to random walks in the absence of a field, 
showing that the degree of asymmetry (in the diffusion limit) is independent of 
time and that the most probable degree of asymmetry corresponds to the maxi- 
mum possible. We show in the present paper how the presence of a symmetric 
field can change this result, both in making the degree of asymmetry depend on 
time, and driving the random walk toward a more symmetric state. 
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1. I N T R O D U C T I O N  

The probabi l i ty  dis t r ibut ion of the end- to-end distance of a r andom 

walk with symmetric t ransi t ion probabil i t ies will reflect that  symmetry. 
However,  it is well known  that  any single realization of a r a n d o m  walk can 

exhibit a considerable degree of asymmetry  in spite of buil t - in symmetry 
properties. This was first remarked on by K u h n  (~/ in the context of the 
theory of polymer  configurations,  but  the basic idea is foreshadowed by 
Polya 's  criteria for the transience or recurrence of r a n d o m  walks to the 
origin. (2'3) Polya showed, for example, that  a symmetric lattice r andom 

walk in one and  two dimensions is certain to re turn to the origin, but  the 
average re turn time for such a re turn is infinite. If we concentrate  for the 

m o m e n t  on the case of one-d imens ional  r a n d o m  walks, we see that this 
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implies that any single realization of such a random walk which is initially 
at the origin tends to remain on one side of the origin for considerable 
periods of time before returning to the origin, thus leading to the 
appearance of asymmetry. Another indication of the asymmetry of 
individual random walks is contained in the arc-sine law, (4~ versions of 
which were first discussed by Lev) (s) and Sparre Andersen, (6) which also 
can be regarded as a quantitative measure of the tendency of a random 
walk to remain preferentially on one side of the origin. A number of 
investigators, motivated by problems related to configurational properties 
of polymer chains, have, within the past few years, analyzed various 
measures of asymmetry as applied to three-dimensional random walks. (7-12) 

Recently Weiss and Weissman (131 have examined a simple measure of 
asymmetry in terms of maximum excursions of random walks. A random 
walk in one dimension at time t will have a maximum displacement in the 
negative x direction which we denote by a(t) and a maximum positive dis- 
placement equal to b(t). If one considers the probability density g(p(t)) of 
the random variable 

min[a(t) ,  b(t)]  
p ( t )  = (1)  

max [a(t), b(t)]  

then it has been shown that (1) in the limit in which the random walk is 
replaced by a diffusion process, g(p(t)) is independent of time, (2) the 
maximum value of g(p) occurs at p = 0, which means that the most prob- 
able degree of asymmetry is the maximum possible and (3) the minimum 
value of g(p) occurs at p = 1. It should be noted that complete symmetry 
is equivalent to the result g(p)= 6(p-1). Generalizations of these results 
were also developed for random walks in higher dimensions. 

In the present note we consider a generalization of the problem set in 
the last paragraph, in which the ordinary random walk in one dimension 
is replaced by a diffusion process in the presence of a biassing field sym- 
metric around the origin, which attracts the particle to the origin. It will be 
assumed that the diffusion process takes place on the entire line. Let the 
time between successive returns to the origin be termed a sojourn and let 
the (random) maximum displacement during this time be denoted by L. 
We examine a class of bias fields which have the property that when 
( L )  = oo the function g(p(t)) has its maximum value at p = 0, while when 
( L )  is finite it attains a maximum value at a value of p intermediate 
between 0 and 1. Our final example is that of a diffusion process in a 
piecewise constant symmetric field with a constant diffusion coefficient. We 
show that for this class of random walks the asymptotically most probable 
value of p is p = 1, i.e., the random walk is asymptotically completely 
symmetric. 
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2. A N A L Y S I S  

In order to calculate the pdf of p(t), we need first to calculate the joint 
pdf of the variables a(t) and b(t). Because of our assumption that the mean 
time to reach the origin from any point on the line is finite, we can, for 
example, let L i be the maximum displacement in the positive x direction 
during the j th  sojourn on the positive side of the origin. The limit t--* 
can be identified with the limit n(t)---, oo, where n(t) is the number of 
sojourns on the positive half-line in time t. With this notation we can, as 
an approximation, represent b(t) in the form 

b(t) ~ max(L~, L2,..., L , ( o ) =  b, (2) 

with an error that tends to 0 in the limit t ~ oo. The difference between the 
actual b(t) and the approximation given in this last equation is due to 
diffusion processes in which there is a sojourn on the positive half-line that 
has not been completed by time t. Rather than develop an expression for 
the time-dependent pdf of p(t), we will calculate an approximation for the 
pdf of p , ,  defined, in analogous fashion to Eq. (l), to be 

min(a, ,  b,) (3) 
P~' max(an, b~) 

that is to say, our measure of time will be the number of sojourns, rather 
than the time. 

In the limit t --+ oo the number of sojourns n on either side of the origin 
will, with a probability approaching 1, also approach oo. Furthermore, the 
random variable an will be independent of b,. Hence, if the pdf of a, is 
denoted by f ,(a), then the joint distribution of a,  and b,, p,(a, b), can be 
expressed as 

pn(a, b)= f~(a) f , (b )  (4) 

with the result that the pdf of p,  is (13) 

S gn(p) = 2  af , (a) f , (pa)da (5) 

The factor of 2 arises from the two possibilities that either a or b can be 
the minimum. Thus, our problem reduces to that of calculating fn(a). Let 
us suppose that we know the pdf of the maximum displacement during a 
single sojourn on either the positive or negative x axis (the two pdf's are 
necessarily the same, since we assume the random walk to be symmetric). 
This function will be denoted by p(L). Then, since n >  1, we may use 
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asymptotic results from extreme-value theory (14) to find an approximation 
to f.(a). 

The result required for our further analysis can be stated in terms of 
a probability H(l), defined by 

H(1) = Pr{L 4 l} (6) 

The average maximum displacement is expressed in terms of this proba- 
bility as 

( L )  = [1 - H ( I ) ]  dl (7) 

We assume that the bias is such as to ensure that ( L )  is finite. In free 
diffusion it is readily shown that ( L )  = oe. We will show how to calculate 
this parameter in the presence of a biassing field. Before doing so, we must 
address the question of how to set the initial conditions in defining what 
we mean by a sojourn. A sojourn on one side of the x axis, say the positive 
side, begins when a diffusing particle crosses the axis from the negative x 
axis. Thus, in a diffusion picture it is necessary to place the particle at the 
origin initially. The sojourn is terminated when the particle reaches the 
origin a second time. A trapping boundary condition can be imposed at 
x = 0 to terminate the sojourn, but if x = 0 is regarded as a trap initially, 
the particle will never move away from the origin. Further, a particle 
reaching the origin need not cross it to the line of opposite parity. The 
simplest way to take these considerations into account is to make the origin 
a partially reflecting point. The specific value of the reflection coefficient 
will have no bearing on our qualitative results, and therefore need not be 
assigned (although this could be done by passing to the continuum limit 
from a lattice random walk). The probability density for the position of the 
diffusing particle will be denoted by p(x, t), which is the solution to 

@ o ,Op  o 
Z = t y  - p) = .zp  

(8) 

which is the most general evolution equation for a diffusion process allowing 
for the possibility of a spatially varying diffusion and field. 

As a first step we calculate the probability that the maximum displace- 
ment in the course of a single sojourn is ~<l. This probability can be 
expressed in terms of the splitting probability e(l), which is defined to be 
the probability that the particle returns to the origin and is absorbed there 
without having reached L =l .  This second condition can be assured by 
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making L = l a trapping point. It is known (15) that ~(1) satisfies the equa- 
tion adjoint to the operator Lf appearing on the right-hand side of Eq. (8): 

d2e & 
•*e = D(x) ~x 2 + v(x) ~ = 0 (9) 

which is to be solved subject to the boundary conditions 116) 

dd--~Xx=o--m[a(0 ) -  1], a ( / ) = 0  (103 

The first of these corresponds to x = 0 being a partially reflecting point, the 
parameter K indicating the degree of absorption. When ~c = o% x = 0 is a 
perfect trap. The function H(l) is expressed in terms of e(l) as 

H(l) = e(O) (11) 

Equation (9) is readily solved with the boundary conditions in Eq. (10) to 
yield the result 

1 
H(I) = 1 (12) 

1 + ~co(t) 

where 

~(z) = fo exp ~-;o b--~a~jdx (13) 

In particular, we may write the expression for ( L )  in terms of f2(l) as 

~,oo d[ 

(L)= jo  1 + KO(0 (14) 

from which it is evident that the question of the convergence of the integral 
can be settled without knowing the parameter ~c. It follows from the com- 
bination of Eqs.(13) and (14) that when v(x)>O, ( L ) = o o ,  as is 
otherwise obvious. 

Let us examine the consequences of the assumption that for large l, the 
function Q(I) goes like 

Q(t) ~ (l/lo) ~ (15) 

where l o is a constant. This class of f2(l) has the property that ( L ) =  oo 
when c~ ~< 1 and ( L )  is finite for c~ > 1. In order to find the probability that 
the largest of n maximum displacements, denoted by Lm, is ~<l, we use the 
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following result from extreme-value theory(14/: Assume that for all x > 0 we 
have 

lim 1 - H(tx) - x  ~ (16) 
1 - H ( t )  

where 7 is a positive constant. Then there is a sequence b,, > 0 such that, 
as  F/---+ oo~ 

P r { L m ~ b . x } = e x p ( - 1 )  (17) 

The constants {b.} can be chosen as the solution to 

1 
H(b.) = 1 - - -  (18) 

/7 

We see from the combination of Eqs. (12) and (15) that in the present 
instance the parameters 7 and b. are given by 

~ = ~ ,  10 1' b . = - ~ n  /~ (19) 

The probability density function fn(a) that appears in Eq. (4) is therefore 
given by 

L ( a )  = e x p  - (20) 

Upon inserting this expression into Eq. (4) and evaluating the resulting 
integral, we find that the function g.(p) is 

2~p~ 1 
g . (p) - (p~+l)  ~ ,  p ~ l  (21) 

We see that just as in the case of field-•e diffusion, g.(p)= g(p) is inde- 
pendent of n. When c~ ~< 1, which corresponds to ( L ) =  0% the location of 
the maximum ofg(p)  occurs at p = 0, while for c~ > 1 or ( L )  < 0% the most 
likely value of p occurs at 

( g  - -  1 "~ 1/~ 
Pm= \ - - - ~ - /  (22) 



Random Walk  in the Presence of a Field 649 

which approaches 1 as c~ ~ o% but is strictly less than 1 when 7 is finite. 
Notice that the particular case in which f2(l) has the asymptotic ( l ~  co) 
power law behavior shown in Eq. (15) it follows that when ( L )  is finite 

v(x)~ - ( ~ ) D ( x )  (23) 

for x sufficiently large. 
It is interesting to consider an asymptotically constant bias field, i.e., 

one that has the property 

v(x) 1 
x --* oo (24) 

D(x) lo' 

This relation implies that v(x) and D(x) have the same functional 
dependence in the limit x ~ oo. When Eq. (24) is valid, Q(l) ~ lo exp(l/lo) 
and ( L )  is finite. A different extreme-value distribution is required for the 
calculation of the asymptotic form off,,(a). This is the following(In): Under 
the assumption that ( L )  < oo one defines the function 

R(t) = ~ ?  [1 - H(/ ) ]  dl (25) 
1 - H ( t )  

If it is the case that 

1 - H ( t  + x R ( 0 )  
lira = e ~ (26) 

, ~  1 - H ( t )  

then there exist constants a n and b~ such that 

lim Pr{Lm<an+bnx}=exp[ -e  x] (27) 

The constant an is given by the solution to Eq. (18) and br, can be set equal 
to R(a,,). It is readily verified that R(t)~ lo and that the condition given 
in Eq. (26) is satisfied. Hence the probability density for the largest of n 
displacements is given by 

n I a n  ( ~ o ) 1  j;,(a) ~ ~cl~ exp lo ~o exp - (28) 

with the result that 

g~,(p) ~ - -  2n2 f ~ I n ~P)] dv (29) (~clo) 2 ~ vexp - v ( l + p ) - ~ o ( e  ~'+e 

- (~cl0) 2 fl" In exp - ~o (fl + fiR) dfl (30) 
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One can find an asymptotic formula for g,,(p) in the limit in which n ~> ~clo. 
For  convenience we set 2 = n/(Mo), so that the asymptotic representation 
will be valid when 2 ~> 1. Let us set 

f l + f i P = r  (31) 

with an inverse function denoted by fl = f ( ~ ) .  These substitutions allow us 
to express gn(P) as the Laplace transform 

g,,(p) = 222 [ f (~) ]P  f ' ( ~ )  In 1 e -  ~ d~ (32) 

Since we are interested in large values of 2, we can use an Abelian theorem 
for Laplace transforms u7~ to assert that the major contribution to the value 
of the integral comes from the behavior of the integrand at small ~. In that 
region we may solve Eq. (31) to find that to lowest order 

.f(~)~l/p (33) 

When this is substituted into Eq. (32), one finds 

2~'2 fo ~ ~ l / P l n ( 1 )  "" g,(, ) w-fly ~ e -'~ de 

_ 221 - 1/o 1 2]  
T 'n (34) 

in which ~9(x)= d ln  F(x)/dx. It is possible to find the properties of gn(p) 
at the endpoints p = O  and p =  1. When p = O  we have, after some 
reduction, 

gn(O)~_~oan e n/,~lO fo [ ln(~lo)_lnu] e U du~ln(~o)  an~o e n/~10 (35) 

which goes to 0 with increasing n. On the other hand, the approximate 
representation for g~(1) is, from Eq. (30), given by 

g"(l)~---SVS~2K l o co vexp --2V--~o e ~ dv 

1 ~e - : l n  2n d r  (36) 
2 2 

which increases logarithmically as n increases. A plot of g,(P) as a function 
of p is shown in Fig. 1, from which one can observe that for any finite n 
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Fig. 1. Three graphs of the function g,(p) defined in Eq. (30) plotted as a function of the 
parameter ;t = n/(~clo). Notice the slow approach of the maximum to p = 1 as a function of 2. 

the peak occurs at a value of p < 1, but as n --+ oo the position of the peak 
approaches  p =  1. Qualitatively similar results can be found when the 
functions v (x ) /D(x )  have the more  general asymptot ic  behavior  

o ,  

D(x )  ~ \ loJ  ' x --+ oo (37) 

for any m > O, 
We therefore see that the presence of a biassing field, or in physical 

terms, a potential,  can lead to qualitative changes in the asymmetry,  as 
measured by the r andom variable Pn- In the case in which the diffusion 
coefficient D(x )  is a constant  and v(x)  is constant  on either side of  the 
origin with v ( x ) =  - v ( - x ) ,  the diffusion process or r andom walk will be 
asymptotical ly symmetric. We have shown that the parameter  whose 
properties are easiest to calculate in the context of asymmetry  is the maxi- 
mum displacement in a given direction, and that the rate at which the 
cumulative probabil i ty H(1) approaches 1 as l--* ~ determines the 
qualitative properties of the asymmetry.  It would be desirable to be able to 
relate the asymmetry  to a return time to the origin, but  a complete solution 
along those lines is more  complicated than the one discussed in the present 
note. Our  analysis is one dimensional; the extension to higher dimensions 
poses a much more  difficult mathematical  problem. To our  knowledge 
there have been no earlier studies of the problem of the asymmetry  of 
symmetric r andom walks which include the effects of a field. 
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